Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 179: 1-12, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38561073

RESUMO

Vertebrate mineralized tissues, present in bones, teeth and scales, have complex 3D hierarchical structures. As more of these tissues are characterized in 3D using mainly FIB SEM at a resolution that reveals the mineralized collagen fibrils and their organization into collagen fibril bundles, highly complex and diverse structures are being revealed. In this perspective we propose an approach to analyzing these tissues based on the presence of modular structures: material textures, pore shapes and sizes, as well as extents of mineralization. This modular approach is complimentary to the widely used hierarchical approach for describing these mineralized tissues. We present a series of case studies that show how some of the same structural modules can be found in different mineralized tissues, including in bone, dentin and scales. The organizations in 3D of the various structural modules in different tissues may differ. This approach facilitates the framing of basic questions such as: are the spatial relations between modular structures the same or similar in different mineralized tissues? Do tissues with similar sets of modules carry out similar functions or can similar functions be carried out using a different set of modular structures? Do mineralized tissues with similar sets of modules have a common developmental or evolutionary pathway? STATEMENT OF SIGNIFICANCE: 3D organization studies of diverse vertebrate mineralized tissues are revealing detailed, but often confusing details about the material textures, the arrangements of pores and differences in the extent of mineralization within a tissue. The widely used hierarchical scheme for describing such organizations does not adequately provide a basis for comparing these tissues, or addressing issues such as structural components thought to be characteristic of bone, being present in dermal tissues and so on. The classification scheme we present is based on identifying structural components within a tissue that can then be systematically compared to other vertebrate mineralized tissues. We anticipate that this classification approach will provide insights into structure-function relations, as well as the evolution of these tissues.


Assuntos
Calcificação Fisiológica , Vertebrados , Animais , Osso e Ossos , Dente/química , Humanos , Dentina/química , Escamas de Animais/química
2.
J Struct Biol ; 215(3): 107998, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37422275

RESUMO

We report on the 3D ultrastructure of the mineralized petrous bone of mature pig using focused ion beam - scanning electron microscopy (FIB-SEM). We divide the petrous bone into two zones based on the degree of mineralization; one zone close to the otic chamber has higher mineral density than the second zone further away from the otic chamber. The hypermineralization of the petrous bone results in the collagen D-banding being poorly revealed in the lower mineral density zone (LMD), and absent in the high mineral density zone (HMD). We therefore could not use D-banding to decipher the 3D structure of the collagen assembly. Instead we exploited the anisotropy option in the Dragonfly image processing software to visualize the less mineralized collagen fibrils and/or nanopores that surround the more mineralized zones known as tesselles. This approach therefore indirectly tracks the orientations of the collagen fibrils in the matrix itself. We show that the HMD bone has a structure similar to that of woven bone, and the LMD is composed of lamellar bone with a plywood-like structural motif. This agrees with the fact that the bone close to the otic chamber is fetal bone and is not remodeled. The lamellar structure of the bone further away from the otic chamber is consistent with modeling/remodeling. The absence of the less mineralized collagen fibrils and nanopores resulting from the confluence of the mineral tesselles may contribute to shielding DNA during diagenesis. We show that anisotropy evaluation of the less mineralized collagen fibrils could be a useful tool to analyze bone ultrastructures and in particular the directionality of collagen fibril bundles that make up the bone matrix.


Assuntos
DNA Antigo , Odonatos , Animais , Suínos , Osso Petroso , Colágeno , Minerais
3.
Acta Biomater ; 167: 583-592, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348777

RESUMO

Phacotus lenticularis is a freshwater unicellular green alga that forms lens-shaped calcitic shells around the cell. We documented P. lenticularis biomineralization pathways in live daughter cells while still within the reproductive complex, using scanning confocal microscopy and after vitrification using cryo-scanning electron microscopy (cryo-SEM). We show that some or all of the calcium ions required for mineral formation enter the cell through endocytosis, as inferred from the uptake of calcein fluorescent dye. Ions first concentrate inside intracellular vesicles to form small crystals that were detected by birefringence, reflectance, and cryo-SEM of cells in near-native, hydrated state. The crystals later exit the cell and build up the lens-shaped shell. The small crystals first cover the outer lorica surface and later fuse to form a thin continuous shell. This is most likely followed by a second shell maturation phase in which the shell undergoes thickening and crystal reorganization. Crystal assembly within the confined protected volume of the reproduction complex allows controlled shell formation outside the daughter cell. Only two other unicellular marine calcifiers, coccolithophores and miliolid foraminifera, are known to perform intracellular crystal formation. STATEMENT OF SIGNIFICANCE: Calcium carbonate (CaCO3) deposition in aquatic environments is a major component of the global carbon cycle, which determines the CO2 content of the atmosphere. In freshwater ecosystems, the green alga Phacotus lenticularis is considered the main contributor of autochthonous calcite precipitation and the only algal species known to form its shell through a controlled process. The chemical and ecological effects of P. lenticularis are intensively investigated, but our understanding of its shell formation is limited. We used advanced confocal laser scanning microscopy and cryo-scanning electron microscopy (cryo-SEM) to provide new insights into mineral formation and trafficking in the calcifying P. lenticularis cells.


Assuntos
Carbonato de Cálcio , Clorófitas , Carbonato de Cálcio/química , Cristalização , Ecossistema , Minerais/metabolismo , Íons , Clorófitas/metabolismo
4.
Acta Biomater ; 155: 482-490, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375785

RESUMO

During spicule formation in sea urchin larvae, calcium ions translocate within the primary mesenchymal cells (PMCs) from endocytosed seawater vacuoles to various organelles and vesicles where they accumulate, and subsequently precipitate. During this process, calcium ions are concentrated by more than three orders of magnitude, while other abundant ions (Na, Mg) must be removed. To obtain information about the overall ion composition in the vesicles, we used quantitative cryo-SEM-EDS and cryo-STEM-EDS analyzes. For cryo-STEM-EDS, thin (500 nm) frozen hydrated lamellae of PMCs were fabricated using cryo-focused ion beam-SEM. The lamellae were then loaded into a cryo-TEM, imaged and the ion composition of electron dense bodies was measured. Analyzes performed on 18 Ca-rich particles/particle clusters from 6 cells contained Ca, Na, Mg, S and P in different ratios. Surprisingly, all the Ca-rich particles contained P in amounts up to almost 1:1 of Ca. These cryo-STEM-EDS results were qualitatively confirmed by cryo-SEM-EDS analyzes of 310 vesicles, performed on high pressure frozen and cryo-planed samples. We discuss the advantages and limitations of the two techniques, and their potential applicability, especially to study ion transport pathways and ion trafficking in cells involved in mineralization. STATEMENT OF SIGNIFICANCE: The 'inorganic side of life', encompassing ion trafficking and ion storage in soft tissues of organisms, is a generally overlooked problem. Addressing such a problem becomes possible through the application of innovative techniques, performed in cryogenic conditions, which preserve the tissues in quasi-physiological state. We developed here a set of analytical tools, cryo-SEM-EDS, and cryo-STEM-EDS, which allow reconstructing the ion composition inside vesicles in sea urchin larval cells, on their way to deposit mineral in the skeletons. The techniques are complex, and we evaluate here the advantages and disadvantages of each technique. The methodologies that we are developing here can be applied to other cells and other pathways as well, eventually leading to quantitative elemental analyzes of tissues under cryogenic conditions.


Assuntos
Cálcio , Ouriços-do-Mar , Animais , Cálcio/metabolismo , Microscopia Crioeletrônica/métodos , Larva , Microscopia Eletrônica de Transmissão e Varredura , Vacúolos/metabolismo , Íons
5.
PLoS One ; 17(10): e0269348, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36282813

RESUMO

The characterization of ancient DNA in fossil bones is providing invaluable information on the genetics of past human and other animal populations. These studies have been aided enormously by the discovery that ancient DNA is relatively well preserved in the petrous bone compared to most other bones. The reasons for this better preservation are however not well understood. Here we examine the hypothesis that one reason for better DNA preservation in the petrous bone is that fresh petrous bone contains more DNA than other bones. We therefore determined the concentrations of osteocyte cells occluded inside lacunae within the petrous bone and compared these concentrations to other bones from the domestic pig using high resolution microCT. We show that the concentrations of osteocyte lacunae in the inner layer of the pig petrous bone adjacent to the otic chamber are about three times higher (around 95,000 lacunae per mm3) than in the mastoid of the temporal bone (around 28,000 lacunae per mm3), as well as the cortical bone of the femur (around 27,000 lacunae per mm3). The sizes and shapes of the lacuna in the inner layer of the petrous bone are similar to those in the femur. We also show that the pig petrous bone lacunae do contain osteocytes using a histological stain for DNA. We therefore confirm and significantly expand upon previous observations of osteocytic lacuna concentrations in the petrous bone, supporting the notion that one possible reason for better preservation of ancient DNA in the petrous bone is that this bone initially contains at least three times more DNA than other bones. Thus during diagenesis more DNA is likely to be preserved in the petrous bone compared to other bones.


Assuntos
DNA Antigo , Osteócitos , Humanos , Suínos , Animais , Osteócitos/patologia , Osso Petroso/diagnóstico por imagem , Osso e Ossos , DNA/genética
6.
Biology (Basel) ; 11(9)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36138831

RESUMO

Combe-Grenal site (Southwest France) was excavated by F. Bordes between 1953 and 1965. He found several human remains in Mousterian levels 60, 39, 35 and especially 25, corresponding to MIS 4 (~75-70/60 ky BP) and with Quina Mousterian lithics. One of the fossils found in level 25 is Combe-Grenal IV, consisting of a fragment of the left corpus of a juvenile mandible. This fragment displays initial juvenile periodontitis, and the two preserved teeth (LLP4 and LLM1) show moderate attrition and dental calculus. The SEM tartar analysis demonstrates the presence of cocci and filamentous types of bacteria, the former being more prevalent. This result is quite different from those obtained for the two adult Neanderthals Kebara 2 and Subalyuk 1, where more filamentous bacteria appear, especially in the Subalyuk 1 sample from Central Europe. These findings agree with the available biomedical data on periodontitis and tartar development in extant individuals, despite the different environmental conditions and diets documented by numerous archeological, taphonomical and geological data available on Neanderthals and present-day populations. New metagenomic analyses are extending this information, and despite the inherent difficulties, they will open important perspectives in studying this ancient human pathology.

7.
Sci Rep ; 12(1): 4466, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296701

RESUMO

Marine Isotopic Stage 5 is associated with wetter climatic conditions in the Saharo-Arabian deserts. This stage also corresponds to the establishment of Middle Paleolithic hominins and their associated material culture in two geographical provinces in southwest Asia-the Eastern Mediterranean woodland and the Arabian Peninsula desert. The lithic industry of the Eastern Mediterranean is characterized by the centripetal Levallois method, whereas the Nubian Levallois method characterizes the populations of the Arabian desert. The Negev Desert, situated between these regions is a key area to comprehend population movement in correlation to climatic zones. This investigation addresses the nature of the Middle Paleolithic settlement in the Negev Desert during MIS 5 by studying the site of Nahal Aqev. High resolution chronological results based on luminescence dating and cryptotephra show the site was occupied from MIS 5e to MIS 5d. The lithic industries at Nahal Aqev are dominated by centripetal Levallois core method. These data demonstrate that Nahal Aqev is much closer in its cultural attributes to the Eastern Mediterranean Middle Paleolithic than to the Arabian Desert entity. We conclude that Nahal Aqev represents an expansion of Middle Paleolithic groups from the Mediterranean woodland into the desert, triggered by better climatic conditions. These groups possibly interacted with hominin groups bearing the Nubian core tradition from the vast region of Arabia.


Assuntos
Arqueologia , Hominidae , Animais , Arábia , Arqueologia/métodos , Geografia , Oriente Médio
8.
J Struct Biol ; 214(1): 107834, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35077832

RESUMO

Biogenic purine crystals function in vision as mirrors, multilayer reflectors and light scatterers. We investigated a light sensory organ in a primarily wingless insect, the jumping bristletail Lepismachilis rozsypali (Archaeognatha), an ancestral group. The visual system of this animal comprises two compound eyes, two lateral ocelli, and a median ocellus, which is located on the front of the head, pointing downwards to the ground surface. We determined that the median ocellus contains crystals of xanthine, and we obtained insights into their function. To date, xanthine biocrystals have only been found in the Archaeognatha. We performed a structural analysis, using reflection light microscopy, cryo-FIB-SEM, microCT and cryo-SEM. The xanthine crystals cover the bottom of a bowl-shaped volume in the median ocellus, in analogy to a tapetum, and reflect photons to light-sensitive receptors that are spread in the volume without apparent order or preferential orientation. We infer that the median ocellus operates as an irregular multifocal reflector, which is not capable of forming images. A possible function of this organ is to improve photon capture, and by so doing assess distances from the ground surface when jumping by determining changes in the intensity and contrast of the incident light.


Assuntos
Insetos , Animais , Morfogênese , Xantina
9.
J Am Chem Soc ; 143(50): 21100-21112, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34881565

RESUMO

Minerals are formed by organisms in all of the kingdoms of life. Mineral formation pathways all involve uptake of ions from the environment, transport of ions by cells, sometimes temporary storage, and ultimately deposition in or outside of the cells. Even though the details of how all this is achieved vary enormously, all pathways need to respect both the chemical limitations of ion manipulation, as well as the many "housekeeping" roles of ions in cell functioning. Here we provide a chemical perspective on the biological pathways of biomineralization. Our approach is to compare and contrast the ion pathways involving calcium, phosphate, and carbonate in three very different organisms: the enormously abundant unicellular marine coccolithophores, the well investigated sea urchin larval model for single crystal formation, and the complex pathways used by vertebrates to form their bones. The comparison highlights both common and unique processes. Significantly, phosphate is involved in regulating calcium carbonate deposition and carbonate is involved in regulating calcium phosphate deposition. One often overlooked commonality is that, from uptake to deposition, the solutions involved are usually supersaturated. This therefore requires not only avoiding mineral deposition where it is not needed but also exploiting this saturated state to produce unstable mineral precursors that can be conveniently stored, redissolved, and manipulated into diverse shapes and upon deposition transformed into more ordered and hence often functional final deposits.


Assuntos
Cálcio/metabolismo , Carbonatos/metabolismo , Fosfatos/metabolismo , Animais , Transporte Biológico , Biomineralização , Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Íons/química , Íons/metabolismo , Larva/metabolismo , Ouriços-do-Mar/crescimento & desenvolvimento , Ouriços-do-Mar/metabolismo
10.
J Struct Biol ; 213(4): 107781, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34411695

RESUMO

The interphase region at the base of the growth plate includes blood vessels, cells and mineralized tissues. In this region, cartilage is mineralized and replaced with bone. Blood vessel extremities permeate this space providing nutrients, oxygen and signaling factors. All these different components form a complex intertwined 3D structure. Here we use cryo-FIB SEM to elaborate this 3D structure without removing the water. As it is challenging to image mineralized and unmineralized tissues in a hydrated state, we provide technical details of the parameters used. We obtained two FIB SEM image stacks that show that the blood vessels are in intimate contact not only with cells, but in some locations also with mineralized tissues. There are abundant red blood cells at the extremities of the vessels. We also documented large multinucleated cells in contact with mineralized cartilage and possibly also with bone. We observed membrane bound mineralized particles in these cells, as well as in blood serum, but not in the hypertrophic chondrocytes. We confirm that there is an open pathway from the blood vessel extremities to the mineralizing cartilage. Based on the sparsity of the mineralized particles, we conclude that mainly ions in solution are used for mineralizing cartilage and bone, but these are augmented by the supply of mineralized particles.


Assuntos
Cartilagem/ultraestrutura , Microscopia Crioeletrônica/métodos , Lâmina de Crescimento/ultraestrutura , Imageamento Tridimensional/métodos , Microscopia Eletrônica de Varredura/métodos , Tíbia/ultraestrutura , Animais , Membrana Basal/ultraestrutura , Vasos Sanguíneos/citologia , Vasos Sanguíneos/ultraestrutura , Desenvolvimento Ósseo , Calcificação Fisiológica , Cartilagem/citologia , Cartilagem/crescimento & desenvolvimento , Diferenciação Celular , Condrócitos/citologia , Condrócitos/metabolismo , Condrócitos/ultraestrutura , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Feminino , Lâmina de Crescimento/citologia , Lâmina de Crescimento/crescimento & desenvolvimento , Camundongos Endogâmicos BALB C , Morfogênese , Tíbia/citologia , Tíbia/crescimento & desenvolvimento
11.
J Struct Biol ; 213(3): 107772, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34311076

RESUMO

The periodontal ligament (PDL) is a highly heterogeneous fibrous connective tissue and plays a critical role in distributing occlusal forces and regulating tissue remodeling. Its mechanical properties are largely determined by the extracellular matrix, comprising a collagenous fiber network interacting with the capillary system as well as interstitial fluid containing proteoglycans. While the phase-contrast micro-CT technique has portrayed the 3D microscopic heterogeneity of PDL, the topological parameters of its network, which is crucial to understanding the multiscale constitutive behavior of this tissue, has not been characterized quantitatively. This study aimed to provide new understanding of such microscopic heterogeneity of the PDL with quantifications at both tissue and collagen network levels in a spatial manner, by combining phase-contrast micro-CT imaging and a purpose-built image processing algorithm for fiber analysis. Both variations within a PDL and among the PDL with different shapes, i.e. round-shaped and kidney-shaped PDLs, are described in terms of tissue thickness, fiber distribution, local fiber densities, and fiber orientation (namely azimuthal and elevation angles). Furthermore, the tissue and collagen fiber network responses to mechanical loading were evaluated in a similar manner. A 3D helical alignment pattern was observed in the fiber network, which appears to regulate and adapt a screw-like tooth motion under occlusion. The microstructural heterogeneity quantified here allows development of sample-specific constitutive models to characterize the PDL's functional and pathological loading responses, thereby providing a new multiscale framework for advancing our knowledge of this complex limited mobility soft-hard tissue interface.


Assuntos
Ligamento Periodontal , Dente , Fenômenos Biomecânicos/fisiologia , Matriz Extracelular , Ligamento Periodontal/fisiologia , Estresse Mecânico , Microtomografia por Raio-X
12.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161257

RESUMO

The Initial Upper Paleolithic (IUP) is a crucial lithic assemblage type in the archaeology of southwest Asia because it marks a dramatic shift in hominin populations accompanied by technological changes in material culture. This phase is conventionally divided into two chronocultural phases based on the Boker Tachtit site, central Negev, Israel. While lithic technologies at Boker Tachtit are well defined, showing continuity from one phase to another, the absolute chronology is poorly resolved because the radiocarbon method used had a large uncertainty. Nevertheless, Boker Tachtit is considered to be the origin of the succeeding Early Upper Paleolithic Ahmarian tradition that dates in the Negev to ∼42,000 y ago (42 ka). Here, we provide 14C and optically stimulated luminescence dates obtained from a recent excavation of Boker Tachtit. The new dates show that the early phase at Boker Tachtit, the Emirian, dates to 50 through 49 ka, while the late phase dates to 47.3 ka and ends by 44.3 ka. These results show that the IUP started in the Levant during the final stages of the Late Middle Paleolithic some 50,000 y ago. The later IUP phase in the Negev chronologically overlaps with the Early Upper Paleolithic Ahmarian of the Mediterranean woodland region between 47 and 44 ka. We conclude that Boker Tachtit is the earliest manifestation of the IUP in Eurasia. The study shows that distinguishing the chronology of the IUP from the Late Middle Paleolithic, as well as from the Early Upper Paleolithic, is much more complex than previously thought.

13.
Nat Rev Endocrinol ; 17(5): 307-316, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33758360

RESUMO

A thorough knowledge of the structures of healthy mineralized tissues, such as bone or cartilage, is key to understanding the pathological changes occurring during disease. Such knowledge enables the underlying mechanisms that are responsible for pathology to be pinpointed. One high-resolution 3D method in particular - focused ion beam-scanning electron microscopy (FIB-SEM) - has fundamentally changed our understanding of healthy vertebrate mineralized tissues. FIB-SEM can be used to study demineralized matrix, the hydrated components of tissue (including cells) using cryo-fixation and even untreated mineralized tissue. The latter requires minimal sample preparation, making it possible to study enough samples to carry out studies capable of detecting statistically significant differences - a pre-requisite for the study of pathological tissues. Here, we present an imaging and characterization strategy for tissue structures at different length scales, describe new insights obtained on healthy mineralized tissues using FIB-SEM, and suggest future research directions for both healthy and diseased mineralized tissues.


Assuntos
Doenças Ósseas/metabolismo , Osso e Ossos/metabolismo , Imageamento Tridimensional/métodos , Humanos
14.
Small ; 17(15): e2001432, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32462807

RESUMO

During breast cancer bone metastasis, tumor cells interact with bone microenvironment components including inorganic minerals. Bone mineralization is a dynamic process and varies spatiotemporally as a function of cancer-promoting conditions such as age and diet. The functional relationship between skeletal dissemination of tumor cells and bone mineralization, however, is unclear. Standard histological analysis of bone metastasis frequently relies on prior demineralization of bone, while methods that maintain mineral are often harsh and damage fluorophores commonly used to label tumor cells. Here, fluorescent silica nanoparticles (SNPs) are introduced as a robust and versatile labeling strategy to analyze tumor cells within mineralized bone. SNP uptake and labeling efficiency of MDA-MB-231 breast cancer cells is characterized with cryo-scanning electron microscopy and different tissue processing methods. Using a 3D in vitro model of marrow-containing, mineralized bone as well as an in vivo model of bone metastasis, SNPs are demonstrated to allow visualization of labeled tumor cells in mineralized bone using various imaging modalities including widefield, confocal, and light sheet microscopy. This work suggests that SNPs are valuable tools to analyze tumor cells within mineralized bone using a broad range of bone processing and imaging techniques with the potential to increase the understanding of bone metastasis.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Nanopartículas , Neoplasias Ósseas/diagnóstico por imagem , Osso e Ossos , Linhagem Celular Tumoral , Feminino , Humanos , Dióxido de Silício , Microambiente Tumoral
15.
Acta Biomater ; 121: 497-513, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33217569

RESUMO

The mineralized collagen fibril is the basic building block of bone, and hence is the key to understanding bone structure and function. Here we report imaging of mineralized pig bone samples in 3D using the focused ion beam-scanning electron microscope (FIB-SEM) under conditions that reveal the 67 nm D-banding of mineralized collagen fibrils. We show that in adult pig osteons, the lamellar bone comprises alternating layers with either collagen fibrils predominantly aligned in one direction, and layers in which fibrils are predominantly aligned in two directions. The cement sheath contains thin layers of both these motifs, but its dominant structural component comprises a very complex layer of fibrils predominantly aligned in three or more directions. The degree of mineralization of the cement sheath is comparable to that of the osteon interior. The extent of alignment (dispersion) of the collagen fibrils in the osteonal lamellar bone is significantly higher than in the cement sheath. Canaliculi within the cement sheath are mainly aligned parallel to the cement sheath boundary, whereas in the lamellar bone they are mainly aligned perpendicular to the lamellar boundaries. This study further characterizes the presence of two types of collagen fibril arrangements previously identified in demineralized lamellar bone from other species. The simple sample preparation procedure for mineralized bone and the lower risk of introducing artifacts opens the possibility of using FIB-SEM to study more samples, to obtain automatic quantitative information on collagen fibril organization and to evaluate the degrees of mineralization all in relatively large volumes of bone.


Assuntos
Osso e Ossos , Ósteon , Animais , Suínos
16.
Proc Natl Acad Sci U S A ; 117(49): 30957-30965, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229583

RESUMO

Sea urchin larvae have an endoskeleton consisting of two calcitic spicules. The primary mesenchyme cells (PMCs) are the cells that are responsible for spicule formation. PMCs endocytose sea water from the larval internal body cavity into a network of vacuoles and vesicles, where calcium ions are concentrated until they precipitate in the form of amorphous calcium carbonate (ACC). The mineral is subsequently transferred to the syncytium, where the spicule forms. Using cryo-soft X-ray microscopy we imaged intracellular calcium-containing particles in the PMCs and acquired Ca-L2,3 X-ray absorption near-edge spectra of these Ca-rich particles. Using the prepeak/main peak (L2'/ L2) intensity ratio, which reflects the atomic order in the first Ca coordination shell, we determined the state of the calcium ions in each particle. The concentration of Ca in each of the particles was also determined by the integrated area in the main Ca absorption peak. We observed about 700 Ca-rich particles with order parameters, L2'/ L2, ranging from solution to hydrated and anhydrous ACC, and with concentrations ranging between 1 and 15 M. We conclude that in each cell the calcium ions exist in a continuum of states. This implies that most, but not all, water is expelled from the particles. This cellular process of calcium concentration may represent a widespread pathway in mineralizing organisms.


Assuntos
Cálcio/metabolismo , Minerais/metabolismo , Modelos Biológicos , Ouriços-do-Mar/metabolismo , Transdução de Sinais , Animais , Larva/metabolismo , Mesoderma/citologia , Ouriços-do-Mar/citologia , Ouriços-do-Mar/ultraestrutura , Espectroscopia por Absorção de Raios X
17.
Faraday Discuss ; 223(0): 278-294, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32748932

RESUMO

Reflective assemblies of high refractive index organic crystals are used to produce striking optical phenomena in organisms based on light reflection and scattering. In aquatic animals, organic crystal-based reflectors are used both for image-formation and to increase photon capture. Here we report the characterization of a poorly-documented reflector in the eye of the shrimp L. vannamei lying 150 µm below the retina, which we term the proximal reflective layer (PR-layer). The PR-layer is made from a dense but disordered array of polycrystalline isoxanthopterin nanoparticles, similar to those recently reported in the tapetum of the same animal. Each spherical nanoparticle is composed of numerous isoxanthopterin single crystal plates arranged in concentric lamellae around an aqueous core. The highly reflective plate faces of the crystals are all aligned tangentially to the particle surface with the optical axes projecting radially outwards, forming a birefringent spherulite which efficiently scatters light. The nanoparticle assemblies form a broadband reflective sheath around the screening pigments of the eye, resulting in pronounced eye-shine when the animal is viewed from a dorsal-posterior direction, rendering the eye pigments inconspicuous. We assess possible functions of the PR-layer and conclude that it likely functions as a camouflage device to conceal the dark eye pigments in an otherwise largely transparent animal.


Assuntos
Crustáceos/química , Nanopartículas/química , Retina/química , Animais , Luz , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Fenômenos Ópticos , Xantopterina/química
18.
J Struct Biol ; 211(2): 107530, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32407760

RESUMO

We examine the structure of the bone of the pharyngeal jaws of a large fish, the black drum (Pogonias cromis), that uses its tooth-jaw complex to crush hard-shelled bivalve mollusks. During mastication huge compressive forces are concentrated in a tiny zone at the tooth-bone interface. We report on the structure of this bone, with emphasis on its contact with the teeth, at different hierarchical levels and in 3D. Micro-CT shows that the molariform teeth do not have roots and are supported by a circular narrow bony rim that surrounds the periphery of the tooth base. The lower pharyngeal jaw is highly porous, as seen by reflected light microscopy and secondary electron microscopy (SE-SEM). Porosity decreases close to the bone-tooth interface and back-scattered electron (BSE-SEM) microscopy shows a slight elevation in mineral density. Focused ion beam - scanning electron microscopy (FIB-SEM) in the serial surface view (SSV) mode reveals a most surprising organization at the nanoscale level: parallel arrays of mineralized collagen fibrils surrounding channels of ~100 nm diameter, both with their long axes oriented along the load direction. The channels are filled with organic matter. These fibril-channel arrays are surrounded by a highly disordered mineralized material. This unusual structure clearly functions efficiently under compression, but the precise way by which this unique arrangement achieves this function is unknown.


Assuntos
Peixes/fisiologia , Arcada Osseodentária/ultraestrutura , Mandíbula/ultraestrutura , Animais , Arcada Osseodentária/fisiologia , Mandíbula/fisiologia , Fenômenos Mecânicos , Dente/fisiologia , Dente/ultraestrutura
19.
Nat Nanotechnol ; 15(2): 138-144, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31932761

RESUMO

Spectacular natural optical phenomena are produced by highly reflective assemblies of organic crystals. Here we show how the tapetum reflector in a shrimp eye is constructed from arrays of spherical isoxanthopterin nanoparticles and relate the particle properties to their optical function. The nanoparticles are composed of single-crystal isoxanthopterin nanoplates arranged in concentric lamellae around a hollow core. The spherulitic birefringence of the nanoparticles, which originates from the radial alignment of the plates, results in a significant enhancement of the back-scattering. This enables the organism to maximize the reflectivity of the ultrathin tapetum, which functions to increase the eye's sensitivity and preserve visual acuity. The particle size, core/shell ratio and packing are also controlled to optimize the intensity and spectral properties of the tapetum back-scattering. This system offers inspiration for the design of photonic crystals constructed from spherically symmetric birefringent particles for use in ultrathin reflectors and as non-iridescent pigments.


Assuntos
Birrefringência , Nanopartículas/química , Fótons , Xantopterina/química , Microscopia , Tamanho da Partícula , Espalhamento de Radiação
20.
Bone ; 130: 115086, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669250

RESUMO

Endochondral ossification in the growth plate of long bones involves cartilage mineralization, bone formation and the budding vasculature. Many of these processes take place in a complex and dynamic zone, the provisional ossification zone, of the growth plate. Here we investigate aspects of mineralization in 2D and 3D in the provisional ossification zone at different length scales using samples preserved under cryogenic or fully hydrated conditions. We use confocal light microscopy, cryo-SEM and micro-CT in the phase contrast mode. We show in 9 week old BALB/c mice the presence of vesicles containing mineral particles in the blood serum, as well as mineral particles without membranes integrated with the blood vessel walls. We also observe labeled mineral particles within cells associated with bone formation, but not in the hypertrophic cartilage cells that are involved with cartilage mineralization. High resolution micro-CT images of fresh hydrated tibiae, show that there are open continuous pathways between the blood vessel extremities and the hypertrophic chondrocyte zone. As the blood vessel extremities, the mineralizing cartilage and the forming bone are all closely associated within this narrow zone, we raise the possibility that in addition to ion transport, mineral necessary for both cartilage and bone formation is also transported through the vasculature.


Assuntos
Condrócitos , Lâmina de Crescimento , Animais , Cartilagem , Camundongos , Camundongos Endogâmicos BALB C , Osteogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...